OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

A glimpse into the past, present and future: Hubble constant measured by neutron star fireball

9/7/2019

0 Comments

 
Picture
Image by ​James Josephides.
The Hubble constant is one of the most fundamental pieces of information that describes the state of the Universe in the past, present, and future. It tells us how fast the Universe is expanding – a valuable piece of information in science’s search for answers.
 
The two best ways of estimating the Hubble constant are based on: the background hiss of the Universe left over from the big bang (the ‘Planck’ observations of the cosmic microwave background radiation), and on massive stars blowing themselves to pieces in the distant Universe (‘type 1a supernovae’ observations). According to the measurements of the exploding stars, the Universe is expanding a bit faster than the measurements of the background hiss would indicate, and the difference is now very significant. So, either one of them is incorrect or something is missing in our understanding of physics and cosmology. We’d like to know what is really happening in the Universe, so we need a third, independent check.
 
This is where the merger of two neutron stars can shed some light. Neutron star mergers are phenomenally energetic events – two stars, each more massive than the Earth’s Sun, whip around each other hundreds of times per second before colliding and producing an enormous blast of material, light and gravitational waves. In 2017, gravitational waves and light were first detected from a neutron star merger that had occurred 130 million years ago, in an event scientists refer to as GW170817.
 
Scientists realised that a burst of gravitational waves can be used as a ‘standard siren’: based on the shape of the gravitational wave signal, we can tell how ‘bright’ the event should have been in gravitational waves. We can then measure the actual brightness of the event and work out what the distance must have been. However, this only works well if we know how the merging stars were oriented on the sky (edge on, face on, or somewhere in between).
 
The gravitational wave data itself can’t accurately tell whether a merger was nearby and edge on, or distant and face on. To answer that question, a team including OzGrav Associate Investigator Adam Deller used radio telescopes to take a super-high-resolution movie of a narrow but powerful jet of material left behind after two neutron stars merged in the GW170817 event. The resolution of the radio images was so high, if it was an optical camera, it would see individual hairs on someone’s head 10 km away. By examining the miniscule changes in this radio-emitting bullet of gas (compared against models developed by supercomputers), the angle of the jet and the orientation of the merging neutron stars was found.
 
Using this information, Adam and the team could tell how far away the merging neutron stars were and, by comparing this with how fast their host galaxy is rushing away from the Earth, they could finally work out the prized Hubble constant. Despite this incredible result, which is published in Nature Astronomy today, the current measurement is still not good enough to distinguish between ‘Planck’ vs ‘Type 1a supernovae’. Further observations of merging neutron stars will soon lead to a more accurate Hubble constant. 
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture