OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Research highlight: Graphics processing unit implementation of the F-statistic for continuous gravitational wave searches

5/4/2022

0 Comments

 
​One promising source of gravitational waves, not yet detected, is rapidly rotating neutron stars. Neutron stars are hyperdense leftovers from stellar evolution, formed from the core of stars of a certain weight class (not too light, not too heavy). Instead of collapsing all the way to a black hole, they stop just short, ultimately packing the mass of the Sun into a ball about 10 kilometers across. Neutron stars are known to spin rapidly, up to hundreds of revolutions per second, and they are so fantastically dense that even a small (millimeters high!) mountain will emit continuous gravitational waves (CWs) that are potentially detectable by LIGO.
 
However, detecting these gravitational waves is no mean feat. Although they are continuously emitted (as opposed to gravitational waves from merging neutron stars and black holes, which last no longer than a few minutes), they are very quiet, and digging these signals out of the noise is very challenging. The task is complicated by the fact that we often have to search over a wide range of gravitational wave frequencies and sky locations, since we do not know where a gravitational wave-emitting neutron star might be in the sky, or how fast it might be spinning. All of these facts combine to create a computational challenge which is formidable – many searches for these continuous gravitational waves are limited by the available computing power.
 
This motivates us to make these searches as computationally efficient as possible, and to take advantage of all resources available. One important resource which has so far been under-utilised in CW searches is graphics processing units (GPUs). Although initially designed, as their name suggests, for crunching numbers in service of producing 3D graphics, over the last twenty years they have proven themselves to be equally useful in many scientific applications, often providing significant speedups over CPUs. Most supercomputing clusters are now equipped with some number of high-powered GPUs for exactly this reason.
 
Our recent paper [1] presents the implementation of one very common method used in CW searches, the “F-statistic”, on GPUs. We show that, using our implementation, one GPU can do the work of 10–100 CPU cores, unlocking a significant new source of computational power to be used in analyses using the F-statistic. We also show that achieving these speeds does not require sacrificing sensitivity, which is extremely important given the faintness of the signal we’re looking for. Finally, as a demonstration of the utility of this new implementation in a real-world context we run a small search for continuous gravitational waves from four recently discovered neutron stars spinning between 200 and 400 times per second. The search consumes 17 hours of GPU time, in contrast to the 1000 hours of CPU time which would have been required to run the equivalent search.
 
This work will allow more CW searches to take advantage of the computing power offered by GPUs in the future and continue to push towards the first detection of continuous gravitational waves.
 
 
[1] https://dx.doi.org/10.1088/1361-6382/ac4616
 
Written by OzGrav PhD student Liam Dunn, the University of Melbourne. 
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture