OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

GLITCH IN NEUTRON STAR REVEALS ITS HIDDEN SECRETS

13/8/2019

0 Comments

 
Picture
OzGrav-Monash researchers Greg Ashton and Paul Lasky. Credit: Carl Knox, OzGrav

AS FEATURED IN THE AGE. 

Neutron stars are among the densest objects in the Universe, and they rotate extremely fast and regularly.
 
Until they don’t.
 
Occasionally, these neutron stars start to spin even faster, caused by portions of the inside of the star moving outwards. It’s called a ’glitch’, and it’s a rare glimpse into what lies within these mysterious objects.
 
In a recent paper published in Nature Astronomy, a team from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) at Monash University; McGill University, in Canada; and the University of Tasmania, studied the Vela Pulsar: a neutron star in the southern sky, 1,000 light years away from Earth.
 
According to the paper’s first author Dr Greg Ashton, from OzGrav-Monash, only 5% of pulsars are known to glitch and Vela ‘glitches’ about once every three years. This makes Vela a famous prized jewel among ‘glitch hunters’ like Ashton and his colleague, Dr Paul Lasky, also from OzGrav-Monash.
 
By reanalysing data from observations of the Vela glitch in 2016, taken by co-author Jim Palfreyman from the University of Tasmania, Ashton and his team found that during the glitch the star started spinning even faster, before relaxing down to a final state. 
 
According to Dr Lasky, this observation (done at the Mount Pleasant Observatory in Tasmania) is particularly important because, for the first time, scientists got invaluable insights into the interior of the star, revealing that the inside of the star actually has three different components. 
 
“One of these components, a soup of superfluid neutrons in the core, moves outwards first and hits the rigid crust of the star causing it to spin up.  But then, a second soup of superfluid that moves in the crust catches up to the first causing the spin of the star to slow back down.  This overshoot has been predicted a couple of times in the literature, but this is the first real time it’s been identified in observations,” he said.
 
One such prediction of the overshoot came from the study’s co-author Vanessa Graber, from McGill University, who visited the Monash team as an OzGrav international visitor earlier this year. 
 
Another observation, according to Dr Ashton, defies explanation: “Immediately before the glitch, we noticed that the star seems to slow down its rotation rate before spinning back up.  We actually have no idea why this is, and it’s the first time it’s ever been seen!  We speculate it’s related to the cause of the glitch, but we’re honestly not sure,” he said. Ashton suspects this paper will spur some new theories on neutron stars and glitches
0 Comments
         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture