OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Bright explosions or quiet collapses into black holes? Scientists investigate the fate of massive stars

11/6/2020

0 Comments

 
Picture
Artist’s impression of a supernova – James Josephides, Swinburne University of Technology

​A team of scientists, including Chief Investigator Ilya Mandel from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) at Monash University, recently submitted a paper investigating what happens to rotating massive stars when they reach the end of their lives.
 
Stars produce energy by fusing lighter elements into heavier ones in their core: hydrogen into helium, then helium into carbon, oxygen, and so on, up to iron. The energy produced by this nuclear fusion also provides pressure support inside the star, which balances the force of gravity and allows the star to remain in equilibrium.
 
This process stops at iron. Beyond iron, energy is required for fusion rather than being released by fusion. A heavy iron star core contracts under gravity, creating a neutron star or, if it is heavy enough, a black hole. Meanwhile, the outer layers of the star explode in a brilliant flash, observable as a supernova. However, some massive stars seem to completely disappear without any explosion. Theories suggest that these massive stars completely collapse into black holes, but is that possible?  
 
A team led by Ariadna Murguia-Berthier, a PhD candidate at the University of California Santa Cruz, and involving OzGrav Chief Investigator Ilya Mandel, set out to answer this question. They were particularly interested in understanding whether a rotating star could quietly collapse into a black hole.
 
In their paper submitted to Astrophysical Journal Letters, they describe a set of simulations investigating the collapse of a rotating gas cloud into a black hole. It was found that if the gas is rotating too quickly at the beginning, it cannot efficiently collapse; instead, the gas stalls in a donut-like shape around the equator of the black hole. 
Picture
The figure shows the formation of a rotationally-supported donut of gas around the black hole, as the initial gas rotates increasingly faster. Credit: Ilya Mandel, OzGrav

The team hypothesised that the heat generated from falling gas slamming into this spinning gas donut will unbind the outer layers of the star and create a supernova-like explosion.  A small percentage of all stars were also found to rotate slowly enough—below the threshold for this gas stalling to occur—and could indeed collapse into black holes quietly.  
 
“It’s very exciting to bring together general relativity, sophisticated computational techniques, stellar models, and the latest observations to explore the formation of black holes from massive stars!” says Mandel.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture