OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Dancing stars and black holes in a cosmic cloud of gas: New research of the ‘common envelope phase’

16/6/2020

0 Comments

 
Picture
Neutron star nebula – Credit: NASA/CXC/SAO: X-ray; NASA/JPL-Caltech: Infrared

​Most massive stars are born in binaries (and sometimes triples, quadruples, and so on—being single isn’t common for such rock stars!). As stars age, they grow larger in size, and not just a little thickening of the waistline, but a hundred-fold or even thousand-fold expansion! When stars in binaries expand, part of them get close to the other star in the binary, whose gravity can then pull off the outer portions of the expanding star. The result is mass transfer from one star to the other.
Usually mass is transferred gradually. But sometimes, the more mass is transferred, the more mass gets pulled off, in a runaway process. The outer layers of one star completely surround the other in a phase known as the common envelope. During this phase, the dense cores of the two stars orbit each other inside the cloud, or envelope, of gas. The gas drags on the stellar cores, causing them to spiral in; this heats up the common envelope, which may get expelled. The cores  may end up  more than one hundred times closer than they started.
This common envelope phase is thought to play a crucial role in forming ultra-compact object binaries, including sources of gravitational waves; however, it is also very poorly understood.
Picture
Diagram of how a common envelope is formed between two stars – Wiki Common

​​In a paper recently accepted to the Astrophysical Journal, Soumi De and collaborators from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) explored the common envelope phase through detailed computer simulations. They used ‘wind-tunnel models’, in which a stellar core, a neutron star or a black hole is buffeted by the ‘wind’ of gas, representing its orbit through the envelope. While this is a simplification of the full three-dimensional physics of the common envelope, the hope is that this approach makes it possible to understand the key features of the problem.
You can watch an animation of one of the models here:  https://sde101.expressions.syr.edu/common-envelope-hydrodynamic-simulations/ .

Co-author and OzGrav CI Ilya Mandel explains that ‘the results revealed the drag forces and the rate of accretion onto the black hole.  Together, these allow us to predict how much the black hole will grow during the common envelope phase’.
‘While a naive estimate suggests that black holes should gain a lot of mass during this phase, we find that’s not the case, and the black holes do not become much heavier,’ says Mandel. ‘And this has important consequences for understanding the merger rates and mass distributions of gravitational-wave sources.’

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture