OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Detecting colliding supermassive black holes: the search continues

10/9/2020

0 Comments

 
Picture
Credit: NASA/JPL/CALTECH

​​A new study has developed an innovative method to detect colliding supermassive black holes in our Universe. The study has just been published in the Astrophysical Journal and was led by postdoctoral researcher Xingjiang Zhu from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), at Monash University.
 
At the centre of every galaxy in our Universe lives a supermassive black hole—a black hole that’s millions to billions times the mass of our Sun. Big galaxies are assembled from smaller galaxies merging together, so collisions of supermassive black holes are expected to be common in the cosmos. But merging supermassive black holes remain elusive: no conclusive evidence of their existence has been found so far. 
 
One way to look for these mergers is through their emission of gravitational waves—ripples in the fabric of space and time. A distant merging pair of supermassive black holes emit gravitational waves as they spiral in around each other. Since the black holes are so large, each wave takes many years to pass by Earth. Astronomers use a technique known as pulsar timing array to catch gravitational waves from supermassive binary black holes—so far to no avail.
 
In parallel, astronomers have been looking for the collision of supermassive black holes with light. A number of candidate sources have been identified by looking for regular fluctuations in the brightness of distant galaxies called “quasars”. Quasars are extremely bright, believed to be powered by the accumulation of gas clouds onto supermassive black holes.
 
If the centre of a quasar contains two black holes orbiting around each other (instead of a single black hole), the orbital motion might change the gas cloud accumulation and lead to periodic variation in its brightness. Hundreds of candidates have been identified through such searches, but astronomers are yet to find the smoking-gun signal.
 
‘If we can find a pair of merging supermassive black holes, it will not only tell us how galaxies evolved, but also reveal the expected gravitational-wave signal strength for pulsar watchers,’ says Zhu.
 
The OzGrav study seeks to settle the debate, determining if any of the identified quasars are likely to be powered by colliding black holes. The verdict? Probably not.
 
“We’ve developed a new method allowing us to search for a periodic signal and measure quasar noise properties at the same time,” says Zhu. “Therefore, it should produce a reliable estimate of the detected signal’s statistical significance.”
 
Applying this method to one of the most prominent candidate sources, called PG1302-102, the researchers found strong evidence for periodic variability; however, they argued that the signal is likely to be more complicated than current models.
 
“The commonly assumed model for quasar noise is wrong,” adds Zhu. “The data reveal additional features in the random fluctuations of gas accumulation onto supermassive black holes.”
 
“Our results are showing that quasars are complicated,” says collaborator and OzGrav Chief Investigator Eric Thrane. “We’ll need to improve our models if we are going to use them to identify supermassive binary black holes.”

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture