OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Hunting for gravitational waves, a national and global collaboration

11/6/2019

0 Comments

 
Picture
​Australian scientists on the hunt for gravitational waves rely on AARNet for transferring data from LIGO detectors in the USA to OzGrav nodes in Australia for analysis.
 
Dozens of researchers from the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav) are part of an international team of scientists making significant discoveries in the emerging field of gravitational-wave astronomy.
 
Gravitational waves carry unique information about their dramatic origins and the nature of gravity. In 2015, scientists detected gravitational waves for the first time and concluded they were produced during the final moments of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes confirmed the predictions of Albert Einstein’s 1915 general theory of relativity.
 
In 2018, the scientists detected the most massive binary black hole merger yet witnessed in the universe. The black hole that resulted from this cataclysmic event is more than 80 times as massive as our Sun. The discovery – along with evidence of nine other black hole mergers – came just over one year since scientists announced they had witnessed, for the first time, the violent death spiral of two dense neutron stars via gravitational waves.
 
Scientists use the extremely sensitive detectors LIGO (two interferometers in the states of Louisiana and Washington, USA) and VIRGO (an interferometer in Cascina, Italy) to survey space for gravitational waves arriving at the earth from a cataclysmic event in the distant universe.  Both these detectors have recently been upgraded and have almost doubled their sensitivity which means that they can survey an even larger volume of space for powerful, wave-making events, such as the collisions of black holes.
 
One of the key upgrades to the LIGO detectors employs a technique called “squeezing” to reduce levels of quantum noise that can mask faint gravitational-wave signals. The technique was developed at the Australian National University, and has been routinely used since 2010 at the GEO600 detector.
 
In April 2019, not long after the LIGO and VIRGO detectors were upgraded, there was much excitement around the world when astronomers revealed the first ever images of a black hole, created in the United States by Massachusetts Institute of Technology’s Dr Katie Bouman using enormous volumes of telescope data.
 
Detection data streams are analysed using high performance computing at the LIGO and VIRGO nodes. Some of this data is transferred to international collaborators over research and education networks for further analysis and discovery, including over AARNet to the OzGrav nodes at partner institutions in Australia.
 
OzGrav is hosted at Swinburne University in partnership with the Australian National University, Monash University, University of Adelaide, University of Melbourne, University of Western Australia, CSIRO and the Australian Astronomical Observatory and collaborators in Europe and the USA.
 
Colm Talbot, an OzGrav scientist from Monash University says gravitational wave astronomy requires a global approach.
 
“By studying black hole collisions and other wave-making events we act as cosmos archaeologists to understand how the universe works. From detecting events through to analysis and discovery, working together nationally and globally improves the quality of individual tasks and leads to better research outcomes.” he said.
 
AARNet provides the reliable, scalable and secure high-speed network required for moving data between OzGrav scientists and their international collaborators to support gravitational wave research.

Author: Jane Gifford from AARNet as featured on The Field.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture