OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Mysterious spinning neutron star detected in the Milky Way proves to be an extremely rare discovery

7/7/2020

0 Comments

 
Picture
Artist’s impression of a radio magnetar. Credit: CSIRO

On March 12th 2020 a space telescope called Swift, detected a burst of radiation from half-way across the Milky Way. Within a week, the newly discovered X-ray source, named Swift J1818.0–1607, was found to be a magnetar: a rare type of slowly rotating neutron star with one of the most powerful magnetic fields in the Universe.
​
Spinning once every 1.4 seconds, it’s the fastest spinning magnetar known, and possibly one of the youngest neutron stars in the Milky Way. It also emits radio pulses like those seen from pulsars--another type of rotating neutron star in our galaxy. At the time of this detection, only four other radio-pulse-emitting magnetars  were known, making Swift J1818.0–1607 an extremely rare discovery.

In a recently published study led by a team of scientists from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), it was found that the pulses from the magnetar become significantly fainter when going from low to high radio frequencies: it has a ‘steep’ radio spectrum. Its radio emission is not only steeper than the four other radio magnetars, but also steeper than ~90% of all pulsars! Additionally, they found the magnetar had become over 10 times brighter in only two weeks.

Comparatively, the other four radio magnetars have almost constant brightness at different radio frequencies. These observations were made using the Ultra Wideband-Low (UWL) receiver system installed on the Parkes radio telescope, also known as ‘The Dish’. Whereas most telescopes are limited to observing radio waves across very narrow frequency strips, the Parkes UWL receiver can detect radio waves across an extremely wide range of frequencies all at the same time.

After further analysis, the OzGrav team found interesting similarities to a highly energetic radio pulsar called PSR J1119–6127. This pulsar underwent a magnetar-like outburst back in 2016, where it too experienced a rapid increase in brightness and developed a steep radio spectrum. If the outburst of this pulsar and Swift J1818.0–1607 share the same power source, then slowly over time, the magnetar’s spectrum should begin to look like other observed radio magnetars.

The age of the young magnetar (between 240-320 years), was measured from both its rotation period and how quickly it slows down over time; however, this is unlikely to be accurate. The spin-down rates of magnetars are highly variable on year-long timescales, particularly after outbursts, and can lead to incorrect age estimates. This is also backed up by the lack of any supernova remnant—remnants of luminous stellar explosions—at the magnetars position.

Lead author of the study Marcus Lower proposed a theory to explain of the magnetar’s mysterious properties: ‘Swift J1818.0–1607 may have started out life as a more ordinary radio pulsar that obtained the rotational properties of a magnetar over time. This can happen if the magnetic and rotational poles of a neutron star rapidly become aligned, or if supernova material fell back onto the neutron star and buried its magnetic field’.

The buried magnetic field would then slowly emerge back to the surface over thousands of years. Continued observations of Swift J1818.0–1607, over many months to years, are needed to test these theories.

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture