OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

New study reveals a huge neutron star collision 3.4 times heavier than the Sun

7/1/2020

0 Comments

 
Picture
Artist's impression of the binary neutron star merger producing GW190425. Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet.
​A new collaborative study with the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveals a possible collision of two neutron stars earlier in 2019—only the second time this type of cosmic event had ever been detected.   The gravitational-wave observatory network, that includes the National Science Foundation's LIGO and the European Virgo detectors, picked up what appeared to be gravitational ripples from a collision of two neutron stars back on 25 April 2019.  
 
Gravitational waves and light were first witnessed in the same event in 2017. This second event in 2019, called GW190425, did not result in any light being detected; however, researchers have learned that the collision resulted in a merged object with an unusually high mass.
 
OzGrav postdoctoral researcher Simon Stevenson says: ‘This event is a perfect example of how gravitational-wave astronomy is a completely new and unique way of looking at the Universe. Binaries with similar masses to this event may not exist in the Milky Way or may be completely invisible to conventional radio telescopes’.
 
Neutron stars are the remnants of dead stars that exploded. When two neutron stars spiral together, they undergo a violent merger that sends gravitational waves shuddering through the fabric of space and time.
 
The gravitational waves first detected in 2015 were generated by the fierce collision of two black holes. Since then, scientists have registered dozens of new candidate black hole mergers. The first detection of a neutron star merger took place two years later, in 2017.
 
OzGrav Postdoctoral Researcher Vaishali Adya says: ‘This detection manifests the importance of continued improvement of the already amazingly sensitive gravitational wave detectors, as this event would not have been observable prior to the latest upgrades. OzGrav played a vital role in these upgrades, one of which involved reducing the quantum noise in the detectors’.
 
OzGrav Postdoctoral Researcher Xingjiang Zhu says: ‘The combined mass of the merging objects is surprisingly high, much greater than any previously known double neutron star binaries including the one detected in 2017. This provokes us to think about the nature of this event and how the source might have been formed’.
 
The combined mass of the merged bodies in this event is about 3.4 times that of the mass of the Sun. Typically, neutron star collisions are only known to happen between pairs of neutrons stars with a total mass up to 2.9 times that of the Sun. One possibility for the unusually high mass is that the collision took place not between two neutron stars, but a neutron star and a black hole, since black holes are heavier than neutron stars. But if this were the case, the black hole would have to be exceptionally small for its class. Instead, the scientists believe it is more likely that the event was a shattering of two neutron stars and that their merger resulted in a newly formed black hole.
 
Neutron star pairs are thought to form either early in life—when companion massive stars successively die one by one—or when they come together later in life within dense, busy environments. The data from the 2019 event do not indicate which of these scenarios is more likely—more data and new models are needed to explain the unexpectedly high mass. The discovery suggests that we may have detected an entirely new population of binary neutron star systems.
 
OzGrav Associate Investigator Greg Ashton says: ‘This event was really interesting. The chirp-like signal was seen by two of the three detectors for about 128 seconds before the final merger. Unfortunately, one of the detectors was not observing at the time, which meant that the sky localization was poor. Perhaps because of this, and because it was so far away, no electromagnetic light was observed from this event. Nevertheless, we saw it very clearly in the gravitational wave data and could use that to calculate the masses, spins, and orientations of the objects’.
 
‘Additional exciting and unexpected discoveries can be expected as the sensitivity of the LIGO detectors improves. OzGrav is working closely with LIGO to improve their sensitivity, developing new instrumentation and analysis techniques’, says Professor Peter Veitch, University of Adelaide OzGrav Node Leader
 
The results were announced today at the American Astronomical Society meeting in Honolulu, Hawaii.
 
The full scientific article will be available here post-embargo: https://dcc.ligo.org/P190425/public
​
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture