OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

RESEARCH HIGHLIGHT: A new approach to rapidly localise gravitational waves

20/12/2021

0 Comments

 
Picture
Artist’s illustration of a black hole and neutron star orbiting each other and about to merge, by Carl Knox, OzGrav-Swinburne University

​Multimessenger astronomy is an emerging field which aims to study astronomical objects using different ‘messengers’ or sources, like electromagnetic radiation (light), neutrinos and gravitational waves. This field gained enormous recognition after the joint detection of gravitational waves and gamma ray bursts in 2017. Gravitational waves can be used to identify the sky direction of an event in space and alert conventional telescopes to follow-up for other sources of radiation. However, following up on prompt emissions would require a rapid and accurate localisation of such events, which will be key for joint observations in the future.
 
The conventional method to accurately estimate the sky direction of gravitational waves is tedious—taking a few hours to days—while a faster online version needs only seconds. There is an emerging capacity from the LIGO-Virgo collaboration to detect gravitational waves from electromagnetic-bright binary coalescences, tens of seconds before their final merger, and provide alerts across the world. The goal is to coordinate prompt follow up observations with other telescopes around the globe to capture potential electromagnetic flashes within minutes from the mergers of two neutron stars, or a neutron star with a black hole—this was not possible before. The University of Western Australia’s SPIIR team is one of the world leaders in this area of research. Determining sky directions within seconds of a merger event is crucial,as most telescopes need to know where to point in the sky. In our recently accepted paper [1], led by three visiting students (undergraduate and Masters by research) at the OzGrav-UWA node, we applied analytical approximations to greatly reduce the computational time of the conventional localisation method while maintaining its accuracy. A similar semi-analytical approach has also been published in another recent study [2].
 
The results from this work show great potential and will be integrated into the SPIIR online pipeline going forward in the next observing run. We hope that this work complements other methods from the LIGO-Virgo collaboration and that it will be part of some exciting discoveries.
 
Written by OzGrav PhD student Manoj Kovalam, University of Western Australia.
 
[1] https://doi.org/10.1103/PhysRevD.104.104008
[2] https://doi.org/10.1103/PhysRevD.103.043011
This work is now accepted by PRD: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.104008
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture