OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

research highlight: bright cosmic explosions could reveal strange interstellar "knots"

8/6/2021

0 Comments

 
PictureShells of material surround the stars of Eta Carinae. A Gamma-ray burst coming from those stars should release large amounts of light as it collides with the denser medium. Image credit: X-ray: NASA/CXC; Ultraviolet/Optical: NASA/STScI; Combined Image: NASA/ESA/N. Smith (University of Arizona), J. Morse (BoldlyGo Institute) and A. Pagan



​Gamma-ray bursts are enormous cosmic explosions and are one of the brightest and most energetic events in the Universe. Their brightness changes over time, illuminating deep space like a flashlight shining into a dark room. Intense radiation emitted from most observed gamma-ray bursts is predicted to be released during a supernova as a star implodes to form a neutron star or a black hole.

In the recently observed gamma-ray burst event called GRB 160203A, remains of the explosion started glowing much brighter than expected, according to standard scientific models, even several hours after the initial flash. We now believe that this “rebrightening” was caused by the main body of the burst crashing through shells of material ejected by the source star, or interstellar “knots”. Both theories suggest that the standard gamma-ray burst model needs to be re-examined, and perhaps the surrounding space isn’t as smooth and uniform as originally predicted.

In our study, we began collecting reports from all over the world that observed the gamma-ray burst event, including the archives of the Zadko research telescope. By carefully calibrating the data from different sources and comparing the different brightness over time, we unpacked the surrounding galaxy and defined key characteristics of the burst: the temporal index (how quickly it fades over time), the spectral index (the overall colour of the burst), and the extinction (how much light is absorbed by the matter between here, on Earth, and the burst). One surprising finding was that the density of the burst’s host galaxy is unusually dense – about the same as our own galaxy, the Milky Way.

The next step was to see how and when the data moved away from the model. With further calculations, we identified three interesting time periods that indicated significant brightness differences compared to the model’s prediction. Although the third period was probably a coincidence, the first and second periods were too large to ignore. Normally, rebrightening is caused by something happening to the host galaxy(?), such as suddenly collapsing into a black hole; however, these kinds of events normally happen within the first few minutes of a gamma-ray burst – in this event, the first rebrightening didn’t start until three hours after the initial explosion.

As a result, we decided to expand the conventional model of gamma-ray bursts to explain this unusual event. One of the properties of such events is the relationship between the density of the medium and the intensity of radiation emitted from the explosion. What’s particularly convincing about this explanation is its applicability to many contexts. As stars prepare to explode into supernovas and gamma-ray bursts, they eject their outer shells into the surrounding space. For bursts that don’t come from supernovas, these changes in brightness could be the result of turbulence in the interstellar medium. In either case, the change in brightness gives us a new tool to probe the structure of distant space, and we are now eagerly anticipating another burst with similar features to put our new model to the test.

​Written by OzGrav PhD student Hayden Crisp, University of Western Australia 

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture