OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Scientists develop a new tool ‘METISSE’, offering new insights into the lives of massive stars

8/9/2020

0 Comments

 
Picture
This artist's impression of different mass stars; from the smallest “red dwarfs”, weighing in at about 0.1 solar masses, to massive “blue” stars weighing around 10 to 100 solar masses. While red dwarfs are the most abundant stars in the Universe, it’s the massive blue stars that contribute the most to the evolution of stars clusters and galaxies. Credit: ESO/M. Kornmesser

Massive stars are larger than about 10 times the mass of the Sun and are born far less often than their low mass counterparts. However, they contribute the most to the evolution of stars clusters and galaxies. From enriching their surroundings in supernova explosions, to altering the dynamics of their systems, massive stars are the precursors of many vivid and energetic phenomena in the Universe.
 
The best tool to study massive stars are ‘detailed stellar evolution codes'­: computer programs which can calculate both the interior structure and the evolution of these stars. Unfortunately, detailed codes are computationally expensive and time-consuming—it can take several hours to compute the evolution of just a single star. For this reason, it’s impractical to use these codes for modelling stars in complex systems, such as globular star clusters, which can contain millions of interacting stars.
 
To address this problem, a team of scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) developed a stellar evolution code called METhod of Interpolation for Single Star Evolution (METISSE). Interpolation is a method for estimating a quantity based on nearby values, such as estimating the size of a star based on the sizes of stars with similar masses. METISSE uses interpolation to quickly calculate the properties of a star at any instant by using selected stellar models computed with detailed stellar evolution codes.
 
Lightning fast, METISSE can evolve 10,000 stars in less than 3 minutes. Most importantly, it can use different sets of stellar models to predict the properties of stars—this is extremely important for massive stars. Massive stars are rare, and their complex and short lives make it difficult to accurately determine their properties. Consequently, detailed stellar evolution codes often have to make various assumptions while computing the evolution of these stars. The differences in the assumptions used by the different stellar evolution codes can significantly impact their predictions about the lives and the properties of the massive stars.
Picture
This illustration demonstrates how a massive star fuses heavier and heavier elements until exploding as a supernova and spreading those elements throughout space. Credits: NASA, ESA, and L. Hustak (STScI)

In their recently published study, the OzGrav researchers used METISSE with two different sets of state-of-the-art stellar models: one computed by the Modules for Experiments in Stellar Astrophysics (MESA), and the other by the Bonn Evolutionary Code (BEC).
 
Poojan Agrawal—OzGrav researcher and the study’s lead author—explains: ‘We interpolated stars that were between 9 and 100 times the mass of the Sun and compared the predictions for the final fates of these stars. For most massive stars in our set, we found that the masses of the stellar remnants (neutron stars or black holes) can vary by up to 20 times the mass of our Sun’.
 
When the stellar remnants merge, they create gravitational waves—ripples in space and time—that scientists can detect. Therefore, this study’s results will have a huge impact on future predictions in gravitational-wave astronomy.
 
Agrawal adds: ‘METISSE is just the first step in uncovering the part massive stars play in stellar systems such as star clusters, and already the results are very exciting.’
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture