OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Scientists find new clues about the cosmic missing link: intermediate-mass black holes

8/5/2020

0 Comments

 
Picture
Two orbiting black holes - JOSH VALENZUELA/UNM

​A team of researchers from the ARC Centre of Excellence for Gravitational Wave discovery (OzGrav)
recently published a study revealing something unexpected about black holes: that intermediate-mass black holes with precessing orbits should be easier to detect than standard ones.​

Black holes are regions of space-time from which nothing can escape, not even light. They are the corpses of dead stars that collapsed under their own weight, after running out of fuel. As archaeology helps us to understand how dinosaurs lived, the study of black holes helps us to understand how stars formed, evolved and died.

When two blackholes collide, they release incredible amounts of energy in the form of gravitational-waves (ripples in the fabric of space-time), producing the most powerful space-time storms. By observing these waves, scientists can explore the most fundamental properties of gravity.

Black holes can be classified according to their mass—two different kinds have been identified: black holes with a mass several times bigger than the Sun; and supermassive black holes that lie in the centre of most galaxies (the largest type of black hole), containing a mass billions of times the mass of the Sun.

Intermediate-mass black holes are the elusive missing link; despite the indirect evidence for their existence, scientists have not yet confirmed a conclusive observation of these black holes. Finding them would help to explain the mystery of how stellar mass black holes can evolve into supermassive ones.

The LIGO and Virgo collaboration searched for intermediate-mass black hole collisions during their first and second observing runs, from 2015 to 2018, but were not successful. On the bright side, the lack of a detection allows scientists to confirm how many of these collisions happen in the Universe.

To achieve this in the study researchers including  OzGrav Alumnus Juan Calderon Bustillo, first determined the observable distance of these collisions using supercomputer simulations. The gravitational-wave signals generated from the collision were recorded and injected into the data to assess their recovery rate in the search algorithms.

When doing similar studies, scientists have always assumed that two colliding black holes approach each other with a constant orbital plane, like the orbit of the Earth and the Sun. However, there is another possible situation in which the black holes move up and down, describing what is known as a precessing orbit.

The researchers found that this kind of collision can be observed from a further distance, allowing them to better constrain the number of black hole collisions out there. This also means that these black holes may be easier to detect if they follow precessing orbits rather than standard ones, making them better candidates for a first detection of intermediate-mass black holes. 
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture