OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding opportunities >
      • Sponsorship request form
      • International Visitor funding program
      • Student and Postdoc funding
      • Carer grant
      • GWIC 3G Funding
      • Research Translation Seed Grants
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Annual Reports
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education & Outreach
    • Education and Public Outreach
    • Graphics and Videos
    • apps
  • Events
    • OzGrav-2
    • Upcoming and Past Events >
      • 2020 OzGrav Annual Retreat
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding opportunities >
      • Sponsorship request form
      • International Visitor funding program
      • Student and Postdoc funding
      • Carer grant
      • GWIC 3G Funding
      • Research Translation Seed Grants
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Annual Reports
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education & Outreach
    • Education and Public Outreach
    • Graphics and Videos
    • apps
  • Events
    • OzGrav-2
    • Upcoming and Past Events >
      • 2020 OzGrav Annual Retreat
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Scientists puzzle over massive, never-before-seen star system

18/5/2020

0 Comments

 
Picture
Artist impression of galaxy - Pixabay

​Earlier this year, an international team of scientists announced the second detection of a gravitational-wave signal from the collision of two neutron stars. The event, called GW190425, is puzzling: the combined mass of the two neutron stars is greater than any other observed binary neutron star system. The combined mass is 3.4 times the mass of our Sun.
 
A neutron star binary this massive has never been seen in our Galaxy, and scientists have been mystified by how it could have formed—until now. A team of astrophysicists from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) think they might have the answer.
 
Binary neutron stars emit gravitational waves—ripples in space-time— as they orbit each other, and scientists can detect these waves when the neutron stars merge. The gravitational waves contain information about the neutron stars, including their masses.
 
The gravitational waves from cosmic event GW190425 tell of a neutron star binary more massive than any neutron star binary previously observed, either through radio-wave or gravitational-wave astronomy. A recent study led by OzGrav PhD student Isobel Romero-Shaw from Monash University proposes a formation channel that explains both the high mass of this binary and the fact that similar systems aren’t observed with traditional radio astronomy techniques.

Picture
Carl Knox, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

Romero-Shaw explains: ‘We propose that GW190425 formed through a process called ‘unstable case BB mass transfer’, a procedure that was originally defined in 1981. It starts with a neutron star which has a stellar partner: a helium (He) star with a carbon-oxygen (CO) core. If the helium part of the star expands far enough to engulf the neutron star, this helium cloud ends up pushing the binary closer together before it dissipates. The carbon-oxygen core of the star then explodes in a supernova and collapses to a neutron star’. 
 
Binary neutron stars that form in this way can be significantly more massive than those observed through radio waves. They also merge very fast following the supernova explosion, making them unlikely to be captured in radio astronomy surveys. 
 
‘Our study points out that the process of unstable case BB mass transfer could be how the massive star system formed,’ says Romero-Shaw.
 
The OzGrav researchers also used a recently-developed technique to measure the eccentricity of the binary—how much the star system’s orbital shape deviates from a circle.  Their findings are consistent with unstable case BB mass transfer.
 
Current ground-based gravitational-wave detectors aren’t sensitive enough to precisely measure the eccentricity; however, future detectors—like space-based detector LISA, due for launch in 2034—will allow scientists to make more accurate conclusions.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2020   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture