OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Scientists reveal new possible explanation of strange black hole merger

5/5/2020

1 Comment

 
Picture
Artist illustration of two black holes orbiting each other.Image credit: NASA/CXC/A.Hobart
Picture[The figure shows the probability distribution for the dimensionless spin of the lighter black hole along the orbital direction (horizontal axis) and the mass ratio (vertical axis) found by Mandel and Fragos.]
​Scientists from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal an alternative explanation of the recently announce black hole merger. The paper was just accepted by Astrophysical Journal Letters.
 
On the 12th of April 2019, the LIGO and Virgo observatories detected gravitational waves—ripples in space and time—from an unusual cosmic event of two black holes merging. Unlike the ten previously reported black hole mergers, in which the two black holes may have had equal or nearly-equal masses, this event, called GW190412, definitely had two very unequal black holes, with the heavier one possibly three or four times more massive than the lighter one.
 
In addition, the discovery paper (released in Australia on 19 April 2020) reported that at least one of the merging black holes had to be spinning: rotating around its axis. However, gravitational waves do not allow accurate measurement of individual spins.  Only a specific spin combination can be measured. Therefore, to infer individual spins, assumptions must be made based on scientific models. The LIGO and Virgo collaborations assumed that the heavier, first-born black hole could be spinning, and reported that it had a moderate spin in the gravitational-wave discovery paper.
 
Within 24 hours of the discovery’s announcement, OzGrav Chief Investigator Ilya Mandel, from Monash University, and collaborator Tassos Fragos, from the University of Geneva, wrote a follow-up paper which has just been accepted by Astrophysical Journal Letters. Motivated by the best current models of the evolution of massive stars in binaries, Mandel and Fragos argued that the more massive, or ‘heavier’, black hole in the event is very slowly spinning; whereas the ‘lighter’ black hole is spinning very fast, in the same direction as the orbital motion.
 


Mandel and Fragos state that if isolated pairs of stars orbiting around each other give birth to merging black holes, they naturally make first-born, heavier black holes that spin very slowly. Before a star forms a black hole, it evolves into a giant with a gaseous envelope.  When it does so, it slows down, like a spinning figure skater extending her arms.  When this envelope is stripped off by extreme tidal forces exerted by the other star in the binary, a slowly rotating central core is left behind, which ultimately collapses into a slowly spinning black hole.
 
The same process should typically apply to the second-born, lighter star, which eventually collapses into the lighter black hole.  However, when the second star loses its gaseous envelope, the binary separation can be sufficiently small enough to allow the naked star core to spin up through ‘tidal locking’.
 
Mandel explains: ‘Tidal locking occurs when tides from an orbiting companion forces an object’s period of rotation—the time it takes it to spin around its axis—to equal the time it takes for a full orbit of the binary system. For example, tidal locking of the Moon to the Earth sets the Moon to rotate the same 28 days equal to its orbital period around the Earth. This explains why we never get to see the dark side of the Moon—except when listening to Pink Floyd.’
 
So, sometimes the second black hole can spin up and rapidly rotate. Mandel and Fragos find this to be the case in the GW190412 event. Such systems should also merge soon after their formation, since tidal locking will only happen in very tight binaries.
 
Although it’s difficult to confirm this interpretation, future detections of black hole mergers will allow for more accurate testing of this model. 
 

1 Comment
Eric Myers
5/5/2020 11:48:49

We can see the dark side of the moon every month. I think you meant to say the far side of the moon. Pink Floyd probably did too.

Reply



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture