OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Scientists uncover new insights about pulsar glitches

30/4/2020

0 Comments

 
Picture
Multi-wavelength image of the Crab nebula, which hosts a glitching pulsar at its heart. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Pulsars are dead stars that spin remarkably steadily – they are some of the most regularly ticking clocks in the Universe! However, every few years some pulsars ‘glitch’, and speed up a tiny amount almost instantaneously. Understanding what causes these glitches may unveil what’s really happening inside these super-dense dead stars. 

Detailed theoretical and computer models are hard to connect to real observations, so instead PhD student Julian Carlin and Chief Investigator Andrew Melatos, from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), built a ‘meta-model’ in a paper recently published in the Monthly Notices of the Royal Astronomical Society.
 
The meta-model relies on the idea that ‘stress’ builds up inside the pulsar until it reaches a threshold, and then some of this stress is released as a glitch. The interesting thing about this meta-model is that the stress increases by taking a ‘random walk’ upwards: like an intoxicated person returning home from the pub who might take two steps forward, one step back, then three steps forward. The randomness in how the stress builds is supported by some theoretical models, as well as a recent study of a glitch-in-action led by OzGrav researchers Greg Ashton, Paul Lasky, and others.
 
Meta-models make predictions about what we should see in the long term from glitching pulsars.
 
‘This meta-model predicts that there should always be a correlation between big glitches and the time until the next glitch: if a lot of stress is released, it takes longer on average for the pulsar to build up enough stress for another glitch,’ explains Carlin.
 
Using this prediction, Carlin and Melatos tried to falsify the meta-model, asking the question: ‘Are there long-term observations that can’t be explained?’. The answer depends on the pulsar. Some are well-explained by the meta-model, while others don’t quite match the predictions.
 
‘We need to see more glitches before this question can be answered for certain, but this work shows a way to answer it for many theoretical models, all at the same time,’ says Carlin.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture