OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • 2022 OzGrav Winter School
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • 2022 OzGrav Winter School
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

RESEARCH HIGHLIGHT: Supernova explosions in active galactic nuclear discs

12/7/2021

0 Comments

 
‘Type Ia’ supernovae involve an exploding white dwarf close to its Chandrasekhar mass. For this reason, type Ia supernova explosions have almost universal properties and are an excellent tool to estimate the distance to the explosion, like a cosmic distance ladder. Collapsing massive stars will form a different kind of supernova (type II) with more variable properties, but with comparable peak luminosities.

To date, the most luminous events occur in core-collapse supernovae in a gaseous environment, when the circumstellar medium near the explosion transforms the kinetic energy into radiation and thus increases the luminosity. The origin of the circumstellar material is usually the stellar wind from the massive star’s outer layers as they’re expelled prior to the explosion.  

A natural question is how will type Ia supernovae look like in a dense gaseous environment? And what is the origin of the circumstellar medium in this case? Will they also be more luminous than their standard siblings? To address this question, OzGrav researchers Evgeni Grishin, Ryosuke Hirai, and Ilya Mandel, together with an international team of scientists, studied explosions in dense accretion discs around the central regions of active galactic nuclei. They constructed an analytical model which yields the peak luminosity and lightcurve for various initial conditions, such as the accretion disc properties, the mass of the supermassive black hole, and the location and internal properties of the explosion (e.g. initial energy, ejecta mass). The model also used suites of state-of-the-art radiation hydrodynamical simulations.

The explosion generates a shock wave within the circumstellar medium, which gradually propagates outward. Eventually, the shock wave reaches a shell that is optically thin enough, such that the photons can ‘breakout’. The location of this breakout shell and the duration of the photon diffusion determine the lightcurve properties.
​
If the amount of the circumstellar medium is much smaller than the ejecta mass, the lightcurves look very similar to type Ia supernovae. Conversely, a very massive circumstellar mass can choke the explosion and it will not be seen. The sweet spot lies somewhere in between, where the ejecta mass is roughly comparable to the amount of circumstellar material. In the latter case, the peak luminosity 100 times bigger than the standard type Ia Supernovae, which makes it one of the brightest supernova events to date.

Picture
Artist's illustration by James Josephides, Swinburne University of Technology

The research paper describing this work (Grishin et al., “Supernova explosions in active galactic nuclear discs”) was recently published in Monthly Notices of the Royal Astronomical Society. The luminous explosions may be observed in accretion discs of accretion rate, or in galaxies with smaller supermassive black hole masses where background active galactic nucleus activity will not hinder observations with advanced instruments.

The underlying physical processes of photon diffusion and shock breakout can be creatively explained with poetry:
All of a sudden, the heat is intense.
We must cool down, but the path is opaque.
Every direction around is so dense,
Which one should the photons take?
They have to break out, for God's sake...
 
At first, they are stuck, no matter the way,
They sway side to side, they randomly walk.
The leader in front leads them astray,
How hogtied is this radiant flock...
But wait, do you also gaze at the shock?
 
The ominous furnace is starting to snap,
Its violent grip getting frail.
The path is now clear, the direction is "up!"
We're sitting on the shock front's tail.
We're seizing the shock, we'll prevail!
 
The shock front behind us, but we're still out of place,
We propel with incredible might.
We keep on ascending, increasing the pace,
Any particle is now out of sight,
In this vacuum, we're free from inside,
 
And can travel as fast
as the light.
 
Written by OzGrav researcher Evgeni Grishin, Monash University

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture