OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

RESEARCH HIGHLIGHT: Triaxially-deformed, freely-precessing neutron stars: continuous electromagnetic and gravitational radiation

2/10/2020

0 Comments

 
Picture
Image by Carl Knox, OzGrav

​Rapidly rotating, asymmetric neutron stars that undergo free precession can produce both modulated pulse signals and continuous gravitational radiation with characteristic features, and thus are potential interesting multi-messenger astrophysical sources.
 
Studies have been carried out to characterise the electromagnetic and gravitational-wave signals from freely-precessing neutron stars, mostly focused on biaxial stars; however, in the most generic cases, triaxially-deformed neutron stars demonstrate more complex features as a result of free precession. In this study, co-authored by OzGrav Associate Investigator Lilli Sun from Australian National University (who was working with Caltech at the time of this research), scientists extend previous work and derive the dynamical evolution of a generic, triaxially-deformed, freely-precessing neutron star with both analytical and numerical approaches.

If the neutron star is observed as a pulsar via radio and/or X-ray telescopes, the free precession could introduce observable characteristic modulations in both the timing and width of the pulse signals, depending on the wobble angle and other source properties. Moreover, free precession of a triaxially-deformed neutron star could manifest as additional lines in the spectra of continuous gravitational waves, detectable by the ground-based gravitational-wave detectors like Advanced LIGO, Virgo, and KAGRA.
 
The researchers introduce a numerical method to integrate the equations of motion in generic cases where analytical solutions are difficult to derive. The timing residuals, pulse-width modulations, as well as the gravitational-wave spectra of a precessing triaxial star, are presented with concrete examples. The results in this work provide guidance for future multi-messenger studies of triaxially-deformed, freely-precessing neutron stars.

Multi-messenger observation of precessing neutron stars will become promising with future high-precision electromagnetic observations (e.g., NICER X-ray timing) and next-generation gravitational-wave detectors (e.g., Einstein Telescope and Cosmic Explorer). Combining characteristic features in radio/X-ray signals and continuous gravitational waves of precessing neutron stars allows scientists to obtain valuable information about the source properties, e.g., the wobble angle, the non-axisymmetry and oblateness of the star. These measurements could shed light on the long-standing questions about the neutron star internal structure and the supranuclear matter equation of state.

​Link to study: https://doi.org/10.1093/mnras/staa2476

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture