Introduction to Sequence Classification using KERAS

Dr. Matthew Smith, ADACS Senior Software Engineer

matthewrsmith@swin.edu.au
WELCOME BACK

• After Lachlan’s talk this morning, you (hopefully) have a clearer picture of the fundamentals of machine learning.

• The purpose of this session is to introduce you to Keras, and in a hands-on manner, apply this tool to solve a practical problem.

Please go ahead and log in (SSH in) to Ozstar now. Let us know if you run into troubles.
HANDS-ON COMPONENT

• Today’s workshop is a hands-on workshop – as I’m talking, I am expecting you to be (i) logged in to Ozstar, (ii) ready to write code and execute them in a remote manner, and (iii) familiar with linux and the use of the Ozstar system in general.

• If you have not used Ozstar previously, this is a great chance - I’ll take regular breaks during each session to make sure all is good.
PROBLEM DEFINITION

- Consider a binary classification problem and we are asking the AI to examine time series data from two different types of time series:

\[x(t) = \text{square}(0.1 + 0.3R_F) \]

\[x(t) = \sin(0.1 + 0.3R_F) \]
PROBLEM DEFINITION

• Can we create a machine learning tool which is able to load the sequence of data from a file and be able to distinguish between a sine or square wave for an arbitrary frequency?

• This is the goal of this tutorial – to achieve this goal, we will use Keras - a high end API which runs on top of Tensorflow.

• To train our neural network, we will need to create training data sets.
PROBLEM DEFINITION

• You’ll need to make copies of these training sets in your home directories.

• The best thing to do is git clone them:
 • Load the git module:
 • Git clone the ADACS_ML_A repository:
 • Go into the Test and Train directories, and unzip the data files:

 module load git/2.16.0
 git clone https://github.com/archembaud/ADACS_ML_A
 tar -xvf test.tar.gz
 tar -xvf train.tar.gz

Go ahead and do this now. I’ll pause here until everyone has done it.
PROBLEM DEFINITION

• The data for each time series – or sequence – is separated into two folders:
 • A training folder (./Train) which contains a large number of files used for training.
 • A testing folder (./Test) which contains the data we will use to test our model.

In each directly, we see X files (containing time series) and Y files (containing the classification, 1 or 0). All files are binary, double precision.
PROBLEM DEFINITION

- For your reference, these files were generated using the MATLAB functions included in the Train and Test folders.
- From the MATLAB command prompt, call Generate_Data(N) where N is an integer. This will create N data files, numbered from 1 to N.
- You can see how these data files are generated – approximately half of them will be sine waves, the other have square waves.
- We could modify these MATLAB scripts for multi-class classification problems easily.

```matlab
function [u] = Generate_Data(N)

% Dr. Matthew Smith, Swinburne University of Technology
% Generate N data files, each containing a time series
% (i.e. sequence) corresponding to one of two classes:
% Y = 0 : Sine Wave
% Y = 1 : Square wave
% Each file will employ a different phase and frequency
% so give the RNN some degree of challenge.

Sequence_size = 128; % 128 values in each time series
for i = 1:1:N
    filename_x = sprintf('X%d.dat', i);
    filename_y = sprintf('Y%d.dat', i);
    if (rand() < 0.5)
        % Make a sin wave
        freq = 0.1 + rand()*0.3;
        y = 0;
        x = 1:1:128;
        fx = sin(freq*x);
    else
        % Make a square wave
        freq = 0.1 + rand()*0.3;
        y = 1;
        x = 1:1:128;
        fx = square(freq*x);
    end
    % Now to save each
    fid = fopen(filename_x,'w');
    fwrite(fid, fx, 'double');
    fclose(fid);
    fid = fopen(filename_y,'w');
end
```
PROBLEM DEFINITION

• The mission, theoretically, is pretty straightforward:
 • Using Python (Python 2.7 to be exact), load both the training sets and testing sets of data.
 • Use Keras / Tensorflow to build a Recurring Neural Network (RNN) with numerous layers to create a model.
 • Use this model with our testing data to check its accuracy.
 • We will use python’s matplotlib to perform some visualization of the accuracy obtained during the training process.
PROBLEM DEFINITION

• Questions we want to investigate at this stage are:
 • How do we use the Ozstar environment to perform this work?
 • How does the number of training data sets used influence the convergence and final accuracy?
 • How many epochs are required to see acceptable results?
• When using Ozstar to perform computation, only several very basic tools are loaded when you log in.

• To load functionality into our Ozstar environment, we use modules to load what we need.

• The modules we require are shown on the right – we could load them in one-by-one, but that would be a waste of time.

• Load the modules by typing ”. script.sh <enter>” (no quotation marks).

You’ll notice script.sh was included with your git clone. Load it now – I’ll check.
INTRODUCTION TO KERAS

• Today’s tutorial includes several python files:
 • train.py – the main script which, when called, loads the training and test data sets, creates the Keras model and defines the neural network, performs the training and tests the model.
 • utilities.py – a script containing simple functions for loading data from files and plotting using matplotlib. This is not called directly; it contains functions called by train.py and view.py,
 • view.py – a stand-alone script which is used to inspect training data for your own verification purposes (i.e. sanity checking).
REVIEW OF TRAIN.PY
TRAIN.PY

• I’d like you to follow along as I browse through train.py.
• Move into the directory where your files are kept, and open the file with a text editor.
• If you are unfamiliar with editing codes through SSH, try nano:

```bash
nano train.py <enter>
```

Nano does support syntax highlighting*

* Not a paid advertisement
As with most python scripts, we start by loading modules.

After loading modules, we define the number of training data sets to load (N_{train}) – here, we have 200 data sets.

Each data set contains a time series with 128 elements (N_{sequence}).
• We only load in the parts of Keras which we need.
• In this work, we are performing a neural network analysis on time series data - in keras, this form of analysis is known as a Sequential analysis – hence, we need to import Sequential.
To employ Neural Networks for learning over time sequences of data, we use a Recurring Neural Network (RNN).

A Recurrent neural networks is a deep neural neural network which has, as the name suggests, recurring inputs to the hidden layer i.e. the output from a hidden layer is fed back to itself.

TRAIN.PY - SEQUENTIAL

• Here, A – our neural network – may contain numerous layers - is repeatedly fed consecutive data from our time series. This is to ensure that the history of our time data is taken into account – that we have what we might describe as a Neural Memory.

• Neural memory is the ability imparted to a model to retain the input from previous time steps when the input is sequential.

• The same approach is used to treat image classification – but this falls outside the scope of this workshop.
TRAIN.PY - SEQUENTIAL

• One potential problem with very large data sets is that information – which might tend to be very important on a small time scale in the large time sequence – tends to disappear into the background when the process is repeated over very large time steps.

• We can use an approach called Long-short Term Memory networks (LSTM) to solve this problem.

• In this case, we won’t – our sequences are quite short, and periodic – but modification of this script to perform this improvement over conventional RNN is quite simple.
Since – in this case – our data is small, we can load it all at once into memory.

We create two numpy arrays \((X_{\text{train}}\text{ and } Y_{\text{train}})\) to hold our training data – initially empty.

We then load each file (one by one) using the read_training_data function contained in utilities.py.

We repeat the process for the testing data set.

We might have used only one variable \((X_{\text{train}})\) for both testing and training using splitting in Keras – you can google this if you are interested.

Keras has numerous strategies for managing data which is too large to fit into memory in a single instance, using data generators.
TRAIN.PY

- We start by creating a Keras Sequential model:
  ```python
  # Create our Keras model - an RNN (in Keras this is a Sequence)
  model = Sequential()
  
  # Configure our RNN by adding neural layers with activation functions
  model.add(Dense(16, activation='relu', input_dim=N_sequence))
  model.add(Dense(8, activation='tanh'))
  model.add(Dense(1, activation='sigmoid'))
  ```

- The model variable holds our neural network, weights and all parameters.
- The Sequential class also has a large number of class functions, some of which we will see later on in this tutorial.
We add hidden Neural layers to the model using the add() function.

The first layer we are adding is a densely connected neural layer with an input of \(N_{\text{sequence}} \) – we are inputting each piece of time series data as an input - and an intermediate output of 16 neurons.

Each layer has an associated activation function – in this case, it is ‘relu’ - Rectified Linear Unit.
The relu function is defined as the maximum positive part of its argument tensor:

\[f(x) = \max(0, x) \]

It has found popular use in deep learning networks in recent years, but is discontinuous. A smooth option is SmoothReLU:

\[f(x) = \log(1 + \exp(x)) \]

We use relu due to its ability to pass gradient information between subsequent iterations – allowing us to avoid the use of LSTM for now.
TRAIN.PY

• We then add another layer, using a different activation function (which you might comment out)

```python
# Create our Keras model – an RNN (in Keras this is a Sequence)
model = Sequential()

# Configure our RNN by adding neural layers with activation functions
model.add(Dense(16, activation='relu', input_dim=N_sequence))
model.add(Dense(8, activation='tanh'))
model.add(Dense(1, activation='sigmoid'))
```

• This time we use the tanh function – this is a non-linear function, which allows us to introduce non-linear dependences into our neural network.

• We’ve also changed the number of neurons in the layer to 8 – all of which are fully connected (dense).
• The result is something like this – only don’t pay attention to the number of neurons in each layer.

Input layer = our time series data (128 neurons)

hidden layer 1

hidden layer 2

output layer

16 neurons

8 neurons

1 neuron

ReLU

Tanh

Sigmoid
• We need to compile our Keras model before we start:

```python
# Compile model and print summary
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())

# Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

# Plot the history
plot_history(history)
```

• An optimizer is a function designed to increase learning speed – we can specify these separately if we wish to alter the learning rate etc. – find more info here: https://keras.io/optimizers/

• Our loss function is the function used to measure the effectiveness of the learning (for the optimizer) – the binary cross entropy function has found favour recently for binary classification.
Finally we can perform our fit:

```python
# Compile model and print summary
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())

# Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

# Plot the history
plot_history(history)
```

The training process is repeated for all training sets N_epochs time – this value should be large enough that we demonstrate convergence on the accuracy computed during training.

To inspect this, we plot the history using the plot_history function inside utilities.py
TRAIN.PY

- **Note:**

```python
# Compile model and print summary
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())

# Fit the model using the training set
history = model.fit(X_train, Y_train, epochs=N_epochs, batch_size=32)

# Plot the history
plot_history(history)
```

- To be able to see this plot, you may need to jump through a few hoops:
 - You will need to ensure X11 forwarding is enabled (add –X to ssh login)
 - On MAC you may need XQuartz installed and running.
RESULTS

* To run your script on the head node (tsk tsk), move to the directory where your python scripts are and type:

```
python train.py <enter>
```

Run this now. If you are forwarding X (i.e. enabling graphics over SSH), you ought to see a graph showing training accuracy.

![Accuracy Convergence History](image)
RESULTS

• After running the script with `N_epochs = 300` with 200 training sets, you should see convergence look like this.

• This was with 2 layers of neurons – you should experiment by adding various numbers (and sizes) of neuron layers; it will influence the accuracy convergence.
DISCUSSION - ACTIVATORS

• Consider the case where we have a single hidden neural layer and no activation functions.
• Hence, the relationship between input and output is strictly linear.
• We can see that the machine is incapable of learning – indicating to us that some manner of non-linearity exists.

ACTIVITY TIME

• In the time remaining:
 • Experiment with the activation functions and their influence on training accuracy convergence vs epoch.
 • Try adding (or removing) additional hidden layers of neurons with different numbers of neurons.
 • Instead of running the job on the head node, submit the job properly (hopefully Ozstar is not still busy; calculations are light.)

If you are happy with your results, head off to lunch. We will resume at 2pm.