OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

RESEARCH HIGHLIGHT: The missing piece of the GW200115 puzzle

12/1/2022

0 Comments

 
Picture
Artist’s impression of a black hole-neutron star merger, by Carl Knox, OzGrav-Swinburne University

​In our recently accepted paper, we examined the black hole-neutron star merger called GW200115, second observed by LIGO and Virgo in January 2020. Curiously, GW200115’s black hole could have been spinning rapidly, with its spin misaligned with respect to the orbital motion. This is strange because it implies that the system would have formed in pretty unexpected ways.
 
So, is there something we’re missing? In our paper we show that the puzzling black hole spin is probably due to something that was added to the LIGO-Virgo measurements instead. It has to do with things called ‘priors’ which encode assumptions about the population of black hole-neutron star binaries based on our current knowledge. We argue that a better explanation for the GW200115 merger is that the black hole was not spinning at all, and consequently, we place tighter constraints on the black hole and neutron star masses.
 
What is a prior?
Imagine you want to know the probability of having drawn an Ace from a deck of cards, given that the card is red. You’d need to know the separate probabilities of drawing an Ace and a red card. The probability of drawing an Ace, independent of the data (“the card is red”) is the ‘prior’ probability of drawing an Ace. Astronomy is similar to a game of cards: we can think of observed gravitational-wave signals as having been dealt to us randomly by the Universe from a cosmic deck of cards. The prior should express our current best knowledge of this deck before we make a measurement, because it‘s used to calculate the probability of each possible black hole spin. In the LIGO-Virgo analysis of GW200115, it was assumed that all black hole spins are equally likely. This is fine if we have no strong preference for any value, but we do: observation and theory tell us we shouldn’t expect a rapidly spinning black hole to be paired with a neutron star. This information is key to accurately measuring the properties of  GW200115.
 
In our paper, we begin by demonstrating that if GW200115 originated from a black hole-neutron star binary with zero spin, the unrealistic LIGO-Virgo prior (which assumes the black hole can equally likely spin with any magnitude and direction) generates preference for a large misaligned black hole spin. We do this by simulating a gravitational-wave signal from a non-spinning binary, placing it into simulated (but realistic) LIGO-Virgo noise, and inferring its properties assuming any spin value is equally likely. Our simulated experiment yields a similar spin measurement to LIGO-Virgo’s and we’re able to explain analytically why signals from black hole-neutron star binaries with zero spin will generically yield such measurements when very broad spin priors are assumed. While this doesn’t prove that GW200115 is non-spinning, it suggests that the puzzling LIGO-Virgo spin measurement is probably due to their unrealistic priors.
 
Next, we look to astrophysics to figure out a more realistic prior. We use current theoretical modelling to suggest that there’s roughly a 95% probability that black hole-neutron star binaries do not spin at all, and only around 5% do spin. We use this astrophysical prior to update the LIGO-Virgo measurements of GW200115’s spins and masses. When we do this, we find that there is almost zero probability that the black hole had any spin at all. While this might seem circular at first glance—after all, we’re giving zero-spin almost 20 times more weight than non-zero spin—it’s also a reflection of the fact that the data don’t strongly support a rapidly spinning black hole. Additionally, we show that our prior reduces the uncertainty on the black hole and neutron star masses by a factor of 3. Reassuringly, the mass of the neutron star looks significantly more like those found in double neutron star systems in the Milky Way.
 
 Written by Rory Smith and Ilya Mandel, Monash University

0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture