OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Continuous gravitational waves in X-ray star systems—the search continues

20/7/2020

0 Comments

 
Picture
Artist’s impression of the exotic binary star system AR Scorpii. Credit: M. Garlick/University of Warwick/ESO

​Gravitational waves are ripples in space-time that come in many forms. So far, short-duration gravitational wave signals have been observed from colliding black holes and colliding neutron stars, but scientists expect to find other kinds of gravitational waves. Recently published research led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)studied continuous waves: long-lasting gravitational waves, in this particular case, waves from neutron stars--old dead stars--in specific star systems called low-mass X-ray binaries. Gravitational-wave detectors LIGO (Laser Interferometer Gravitational-wave Observatory) and Virgo provide excellent data to search for continuous waves as their signals  are likely to be present in the detector data all the time (compared to gravitational waves from colliding black holes, which last only a second or so).
 
Neutron stars, which are typically about one and half times the mass of our Sun, are very compact at only 20km across. Some neutron stars are alone, while others are in “binary systems”--the neutron star and a companion star orbit around each other.  The OzGrav team focused on looking for continuous waves from spinning neutron stars in "low mass X-ray binaries" (LMXBs).  Low mass describes the neutron star's companion which typically has a lower mass than our Sun;they are called X-ray binaries because scientists have observed X-rays from them using X-ray telescopes.
 
In the study, the team searched for continuous waves from spinning neutron stars by directly targeting five LMXBs, which is a first for these five LMXBs. All the targeted LMXBs have X-ray observations which indicate how fast the neutron star is spinning: its rotation frequency. This is extremely useful information when searching for continuous waves as it’s expected that the frequency of the continuous wave is related to the rotation frequency of the neutron star. This allowed the team to search for each LMXB within a specific frequency range.
 
Lead author and OzGrav researcher from the University of Melbourne Hannah Middleton says: “We used a search method, developed by researchers at the University of Melbourne,which was previously used to search for another LMXB called Scorpius X-1. Scorpius X-1 is a promising continuous wave source, because its X-rays are very bright, but the X-ray observations were  unable to measure Scorpius X-1's rotation frequency. This means that a wide range of frequencies need to be looked at. By taking advantage of the X-ray measurements of rotation frequency for our five LMXBs, we can reduce the computational cost of the search, sometimes by as much as 99 per cent.”
 
But knowing the rotation frequency is not quite enough:the continuous wave frequency may not equate to the rotation frequency, so the team searched for small frequency ranges around the measured values.
 
“The continuous wave frequency might even be slowly changing over time, so we need to be able to track it over many months of data,” adds Middleton. “The search uses a technique called a hidden Markov model which is widely used in applications from speech recognition to communication technologies. The resulting search can keep track of a signal even if the frequency changes unpredictably during an observation.”
 
So, what did the scientists find? After analysing data from the second observing run (over 200 days between November 2016 to August 2017), unfortunately they did not find strong evidence for continuous wave signals from these five LMXBs. But the search continues! LIGO and Virgo's third observation run (from April 2019 to March 2020) has just completed, so the OzGrav scientists have plenty of data analysis and star searching to sink their teeth into. 
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture