OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding opportunities >
      • Sponsorship request form
      • International Visitor funding program
      • Student and Postdoc funding
      • Carer grant
      • GWIC 3G Funding
      • Research Translation Seed Grants
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzGrav-2
    • Upcoming and Past Events >
      • 2020 OzGrav Annual Retreat
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding opportunities >
      • Sponsorship request form
      • International Visitor funding program
      • Student and Postdoc funding
      • Carer grant
      • GWIC 3G Funding
      • Research Translation Seed Grants
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzGrav-2
    • Upcoming and Past Events >
      • 2020 OzGrav Annual Retreat
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

Inside the amazing, crazy hunt for super-powerful space energy

1/7/2019

0 Comments

 
Picture
Image by Carl Knox. 
Inside a small room in the Melbourne suburb of Hawthorn a team of astrophysicists, with a little help from work experience students and a 12-year-old boy, are leading a global hunt for one of the universe’s most mysterious and powerful phenomena.

For one week this is the control centre for about 64 telescopes dotted around – and above – the Earth.
The team is on the world’s biggest chase for fast radio bursts, mysterious and super-powerful blasts of radio-wave energy visible clear across the universe. But the Deeper Wider Faster team, as it is known, has even bigger ambitions.
​
Over the past few years, astronomers have spotted a number of these bursts. The CSIRO announced on Friday that it had spotted one and traced its location to a galaxy 3.6 billion light years away.

But the scientists in the Hawthorn room not only want to spot one; they hope to find out what causes the bursts.

Fast radio bursts – astronomers refer to them as FRBs – are extremely short and powerful bursts of radio waves originating from somewhere outside the Milky Way. Some contain more energy within a moment than our sun produces in decades.

“It’s a millisecond burst that goes off once, unpredictably. And you have no idea when. Trying to catch that, it’s hard,” says Jeff Cooke, chief investigator at the ARC Centre for Excellence in Gravitational Wave Discovery. He has spent the past half-decade pulling all this together.

Last week's telescope global hook-up finished on Saturday. The team hasn't spotted anything thus far, but there were problems with one of the radio telescopes and data analysis will continue to see if anything was missed.

No one knows what the bursts are. Most scientists agree they are not linked to aliens.
Each astrophysicist in the control room last week at Swinburne University’s Hawthorn campus has their own favourite theory.

Professor Cooke hopes they come from magnetars, a kind of neutron star with a super-powerful magnetic field. An incredibly intense "star-quake" on its surface might produce an FRB.
Sara Webb hopes the answer is a blitzar, a pulsar that explodes then collapses into a black hole.
And Igor Andreoni hopes FRBs come from colliding neutron stars, which generate explosions so powerful they warp the space-time fabric.

To find out, the three have spent five years wrangling telescopes around the world to work together.
The global coalition ranged from the high-tech – like IceCube, a sensor embedded deep under the Antarctic ice, and the Hard X-ray Modulation Telescope, flying in  a low orbit of Earth – to decidedly low-tech: a telescope set up in a Pakenham backyard by an amateur astronomer.

The telescopes have been looking at the same patch of sky. But – and here’s the trick – they  all look with different eyes. The X-ray Modulation Telescope, for example, sees in X-rays, while IceCube’s one-kilometre-wide sensor is designed to pick up neutrino signatures.

Different signals can travel through space at different speeds. Radio waves typically are the slowest. This means by the time a radio telescope detects a fast radio burst, all the other signals – things that could tell us what the FRB actually is – may have already gone racing past the Earth.

The hope for last week's hook-up was that by looking with about 64 sets of different eyes, when an FRB fired off the other telescopes would spot something – a burst of light, or X-rays, or anything at all– that gave a clue as to what the FRB really is.

The researchers have done six runs at this in the past four years, each time harnessing more and more telescopes. So far, nothing.

Data flowed last week from the telescopes around the world to a supercomputer able to pick out anything that could possibly be a signal – like a space explosion – that could generate an FRB.
The probabilities told the scientists their radio telescopes would spot one or two FRBs last week. The supercomputer, however, could identify tens of thousands of possible signals every day.

The aim was for humans to check any signals within minutes of their happening in order to send a quick command to giant telescopes in Chile and South Africa that stood ready to try to get a good image of the FRB.

However, the team will now need to go back over some of the results due to problems with a telescope not providing needed data.

Many scientists don’t even believe an FRB will come with another signal. “So that makes it even harder,” Dr Andreoni says.

In the control room one day early last week, in charge of assessing the thousands of possible FRBs is that crack team of astrophysicists – and a few work experience students. There are six of the latter, all here for the day from school. They are joined by Blake Iscaro, a 12-year-old with a deep interest in space who matter-of-factly says he is using scavenged parts to build a radio-telescope in his backyard.
The supercomputer sprays the data up on the wall. Then it's up to the team to spot something. Fast.

“Computers find things you know pretty well. They don’t find things you have not ever seen before,” Professor Cooke says. “If you’re going to trigger these gigantic telescopes, which cost a ridiculous amount of money, you don’t want them to point at something that wasn’t real.”

Two stations down from Professor Cooke, year 10 student Max Petschack leans closer to his screen, face screwed up in concentration, staring at what looks like a yellow blob.

The light curve shows the blob became dramatically brighter between measurements. “This one’s interesting,” he says.

Michelle Ko leans over to look. “Wow,” she says.

Max points at the light curve. “That’s a, what, point four difference?”

“Yeah, that’s a huge difference,” says Michelle, before calling Dr Andreoni over. He leans over the children’s shoulders, checking their work.

Is this the moment?

Sadly, he does not think so. There is a lot of turbulence in the atmosphere messing with their brightness measurements. And the dot Max found is too round. “That means it’s probably a star,” Dr Andreoni says.
By Liam Mannix - As featured in The Age.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2020   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture