OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
    • How to write a research brief
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • Binary Neutron Star Discovery
  • Contact Us

new TECHNOLOGY TO IMPROVE WORLD’S MOST SENSITIVE SCIENTIFIC iNSTRUMENTS

18/2/2021

0 Comments

 
PictureCredit: Carl Knox, ARC Centre of Excellence for Gravitational Wave Discovery, Swinburne University

​

​A new technology that can improve gravitational-wave detectors, one of the most sensitive instruments used by scientific researchers, has been pioneered by physicists at The University of Western Australia in collaboration with an international team of researchers.
 
The new technology allows the world’s existing gravitational wave detectors to achieve a sensitivity that was previously thought only to be achievable by building much bigger detectors.
 
The paper, published today in Communications Physics, was led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) at UWA, in collaboration with the ARC Centre of Excellence for Engineered Quantum Systems, the Niels Bohr Institute in Copenhagen and the California Institute of Technology in Pasadena.
 
Emeritus Professor David Blair, from UWA’s Department of Physics, said the technology merged quantum particles of sound vibration called phonons with photons of laser light, to create a new type of amplification in which the merged particles cycled back and forth billions of times without being lost.
 
“More than a hundred years ago Einstein proved that light comes as little energy packets, which we now call photons,” Emeritus Professor Blair said.

Picture
Using the interaction of photons and phonons, a tiny resonator less than 1 mm in size can dramatically increase the sensitivity of a kilometer scale interferometer. Credit: Carl Knox, ARC Centre of Excellence for Gravitational Wave Discovery, Swinburne University.

One of the most sophisticated applications of photons are gravitational-wave detectors, which allow physicists to observe ripples in space and time caused by cosmic collisions.
 
“Two years after Einstein's prediction of photons, he proposed that heat and sound also come in energy packets, which we now call phonons,” Emeritus Professor Blair said.
 
“Phonons are much trickier to harness individually in their quantum form because they’re usually swamped by vast numbers of random phonons called thermal background.”
 
Emeritus Professor Blair was awarded the prestigious Prime Minister’s Prize for Science in 2020 for his contribution to the first detection of gravitational waves.
 
Lead author Dr Michael Page said the trick was to combine phonons and photons together in such a way that a broad range of gravitational wave frequencies could be amplified simultaneously.
 
“The new breakthrough will let physicists observe the most extreme and concentrated matter in the known universe as it collapses into a black hole, which happens when two neutron stars collide,” Dr Page said.
 
Emeritus Professor David Blair said the waveforms sounded like a brief scream that was pitched too high for current detectors to hear.
 
“Our technology will make those waveforms audible, and will also reveal whether the neutrons in neutron stars get split up into their constituents called quarks when they are in this extreme state” Emeritus Professor Blair said.
 
“The most exciting thing about seeing nuclear matter turn into a black hole is that the process is like the reverse of the Big Bang that created the universe. Observing this happen will be like watching a movie of the Big Bang played backwards.”
 
Emeritus Professor Blair said while the technology did not represent an instant solution to improving gravitational-wave detectors it offers a low-cost route to improvement.
 
As featured on the UWA news website.
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture