OzGrav

  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us
  • Home
  • About
    • Vision & Mission
    • Join OzGrav
    • Mental Health and Wellbeing
    • Getting started in OzGrav
    • Funding Opportunities
    • Diversity and Inclusion
    • Code of Conduct
    • OzGrav Mentoring Program
    • Nodes & Partners
    • Facilities & Capabilities
    • Reports >
      • Annual Reports
      • Industry Success Stories
      • Strategic Plan
    • Member resources
  • Our People
    • Chief Investigators
    • Partner Investigators
    • Associate Investigators
    • Postdocs and Students >
      • Faces of OzGrav
    • Professional & Outreach staff
    • Governance Advisory Committee
    • Scientific Advisory Committee
    • Executive Committee
    • Equity & Diversity Committee
    • Early Career Researcher Committee
    • Professional Development Committee
    • Research Translation Committee
    • OzGrav Alumni
  • Research Themes
    • Instrumentation
    • Data/Astro
  • Education and Outreach
  • Events
    • OzFink workshop 2023
    • 2022 OzGrav ECR Workshop and Annual Retreat
    • Upcoming and Past Events
  • News/Media
    • News
    • Newsletter
    • How to write a research brief
  • Contact Us

Research Highlight: Gravitational wave scientists develop new laser mode sensor with unprecedented precision

10/5/2022

0 Comments

 
Picture
Figure 1: False colour image of laser eigenmodes that were tested. The colour indicates the phase of the light. Red is 0 degrees, blue is 180 degrees.

​Lasers support certain structures of light called ‘eigenmodes’. An international collaboration of gravitational wave, metasurface and photonics experts have pioneered a new method to measure the amount of these eigenmodes with unprecedented sensitivity.

In gravitational wave detectors, several pairs of mirrors are used to increase the amount of laser light stored along the massive arms of the detector. However, each of these pairs has small distortions that scatters light away from the perfect shape of the laser beam. This scattering can cause excess noise in the detector, limiting sensitivity and taking the detector offline.

From the recently submitted study, Prof Freise (from Vrije Universiteit Amsterdam) says: “Gravitational wave detectors like LIGO, Virgo and KAGRA store enormous amount of optical power – in this work, we wanted to test an idea that would let us zoom in on the laser beam and look for the small wiggles in power that can limit the detectors’ sensitivity.”Lasers support certain structures of light called ‘eigenmodes’. An international collaboration of gravitational wave, metasurface and photonics experts have pioneered a new method to measure the amount of these eigenmodes with unprecedented sensitivity.
Picture
Figure 2: A schematic of the apparatus used by the researchers. f is the focal length of the lens.

​A similar problem is encountered in the telecoms industry where scientists want to use multiple eigenmodes to transport more data down optical fibres. OzGrav researcher and lead author Dr Aaron Jones (The University of Western Australia) explains: “Telecoms scientists have developed a way to measure the eigenmodes using a simple apparatus, but it’s not sensitive enough for our purposes. We had the idea to use a metasurface and reached out to collaborators who could help us fabricate one.”

In the study, the proof-of-concept setup the team developed was over 1000x more sensitive than the original way developed by the telecoms scientists. The researchers will now look to translate this work into gravitational wave detectors, where the additional precision will be used to probe the interiors of neutron stars and test fundamental limits of general relativity.

OzGrav Chief Investigator, Prof Zhao (from University of Western Australia) says: “Solving the mode sensing problem in future gravitational wave detectors is essential, if we are to understand the insides of neutron stars.”

Written by Dr Aaron Jones (The University of Western Australia).
0 Comments



Leave a Reply.

         


    OzGrav News


    Archives

    March 2023
    December 2022
    November 2022
    September 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    August 2019
    July 2019
    June 2019
    April 2019
    March 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    September 2016
    June 2016
    February 2016

    Categories

    All
    Event
    Media

      Keep up to date with ozgrav news and events

    Subscribe to Newsletter

    RSS Feed

Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our six Australian nodes stand

​© 2022   The ARC Centre of Excellence for Gravitational  Wave Discovery (OzGrav)
Banner images: An artist's impression of gravitational waves generated by binary neutron stars.  Credits: R. Hurt/Caltech-JPL
Picture